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An alternative method of building a partially restricted single Slater determinant with the
number ofα electrons equal to the number ofβ electrons has been proposed. Using a sim-
ple to implement method of taking the orthogonality constraints into account the amended
unrestricted Hartree–Fock (UHF) equations for molecular orbitals have been obtained. The
formalism deals as does the UHF theory with the cubic equations with respect to the LCAO
coefficients whereas a partially restricted HF approach developed in [10] leads to the fifth-
degree equations. The minimal extra calculations are required to implement this scheme in
existing UHF codes. Unlike the known Roothaan coupling formalism the proposed approach
is suitable for use with the well-established unrestricted Møller–Plesset perturbation theories
in incorporating the electron correlation effects. Some peculiarities of using the method are
illustrated by considering a model molecular system.
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1. Introduction

A single Slater determinant is the simplest wave function (WF) to study both
closed and open-shell systems. Conceptual simplicity of such a WF allows one to de-
velop the cost-effective perturbation approaches for incorporating electron correlation
effects [1–3]. The existing quantum chemistry calculation methods deal with the dif-
ferent schemes of designing a Slater determinant. A restricted Hartree–Fock (RHF)
function with the doubly occupied spatial molecular orbitals (MOs) is usually applied
to closed-shell systems. However, in several cases a single RHF determinant cannot
even approximately describe the states of a molecular system such as those from regions
of the potential energy surface which are far from equilibrium geometry or the singlet
excited states. In contrast, the unrestricted HF (UHF) determinant, in which the elec-
trons of opposite spins are assigned to spatially different MOs, is capable of correctly
describing such cases. This function, however, is not a spin eigenfunction and contains
contamination by higher spin states. The approaches based on the Löwdin spin projec-
tion operator [4] are usually employed to remedy the spin contamination problem (see,
e.g., [4–9, and references therein]). This requires evaluation of expectation values of the
Löwdin operator and presents severe computational difficulties.
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A compromise WF, a so-called partially restricted HF (PRHF) function, has been
introduced in [10] for describing a transition from the diradicals to the dicarbens. This
function has the following form:

�(0) = det
∣∣ϕα1α ϕβ1β . . . ϕαq α ϕβq β ϕαq+1α ϕ

β

q+1β . . . ϕ
α
q+pα ϕ

β
q+pβ

∣∣. (1)

There areq orbitals with closed-shell character, i.e., theα MOsϕαi , i = 1,2, . . . , q, are
taken to be spatially identical to theβ MOs ϕαi = ϕβi , i = 1,2, . . . , q. These orbitals
form the so-called “core” subspace. The otherp orbitals have different spatial parts, i.e.,
ϕαi �= ϕβi , i = q+1, q+2, . . . , q+p, and form the unrestricted part (so-called unpaired
electrons).

On the one hand, such a Slater determinant as well as the UHF function as com-
pared to the RHF WF has the freedom of being symmetry broken. For example, singlet–
triplet instabilities can be described by a PRHF WF [10]. On the other hand, the ad-
vantage of this function as compared to the fully UHF one is a simple way to construct
spin eigenstates. For example, this function with two electrons in the unrestricted part
(i.e., p = 1) is just a mixture of singlet and triplet components. The application of a
single Amos annihilator [6] to such a function provides the pure spin state, whereas for
the UHF function this procedure can produce a WF which, in general, is still far from an
eigenfunction ofS2.

In [10] a modified coupling operator formalism has been used for the determination
of molecular orbitals (MOs) which result from three coupled equations with different
Fock operators: for the “core” orbitals and for theα spin andβ spin orbitals of the
unrestricted part. Due to the difference in the symmetry properties of closed and open
shell orbitals, it is impossible to find a common Fock operator for all orbitals [10] as is
the case in the open-shell coupling operator Roothaan formalism [11,12].

It is clear that the next stage in applying this attractive model is to develop many-
body perturbation theories (PTs) based on a single reference PRHF WF (1). Unfortu-
nately, the formalism proposed in [10] as well as the open-shell Roothaan method [11]
does not lend itself very readily to a well-defined zeroth-order HamiltonianH(0). PT
calculations based on this formalism are problematic because there is no unique way
to choose off-diagonal Lagrangian multipliers coupling the closed and open-shell MOs
(see, e.g., [12]). In other words, arbitrariness in their definition leads to different forms
of PT. Consequently, the problem of the choice ofH(0) is open to discussion. Useful
analysis and comparison of these PTs for open-shell systems can be found in [13–16,
and references therein].

In [17] we have proposed an alternative way of obtaining restricted open-shell
WF from which PT can be performed using the UHF formalism and, therefore, am-
biguity problems do not appear. The preliminary calculation results have shown work-
ability of such a scheme for both the ground and the excited states [18,19]. In this
paper we shall show how a similar formalism can be applied to a PRHF function.
Unlike [17] we shall consider even-electron systems with the number ofα electrons
equal to the number ofβ electrons. In this case we deal with some specific orthog-
onality constraints different from those for open-shell systems. The variational prin-
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ciple for the energy and a very simple to implement method of taking the orthogo-
nality constraints into account (TOCIA) previously developed by us [17,20,21] leads
to the amended UHF equations for the MOs of the PRHF WF. They present the nat-
ural base to describe the effects of the electron correlation using the well-established
spin-annihilated PTs [7,8,22]. In order to clarify some features of this work the next
section gives a brief general theory of the TOCIA method. In section 3 we discuss
the restrictions imposed on the UHF model and derive the equations for the MOs.
Some peculiarities of using the proposed method are discussed in section 4. Fi-
nally, concluding remarks and the potential ways for the applications are given in sec-
tion 5.

2. Outline of TOCIA method

Here we describe the main ideas of our TOCIA method which proved to be the
useful tool for solving the eigenvalue problems with orthogonality constraints.

It is well known that many problems in physics and, in particular, quantum chem-
istry can be regarded as the variational problem

E = min

(〈�|H |�〉
〈�|�〉

)
, (2)

with orthogonality constraints

〈�|ui〉 = 0, ui = 1,2, . . . , r. (3)

HereE andH are the energy and the Hamiltonian of a system respectively,� is a trial
WF approximated by expansion in a finite basis set, i.e.,

|�〉 = P |�〉,
whereP is the orthoprojector defined by the finite basis set (dimensionm). |ui〉, i =
1,2, . . . , r < m, are thearbitrary constraint vectors, which are not, in general, eigen-
vectors of the operatorPHP . For example, this is a case of the excited state calculations
where a basis set specifically designed for the ground state can be used to determine a
ground state energy and a different basis set used in the approximation of an excited state
WF [18,23]. In section 3 we shall show that such constraint vectors are assigned to be
the core orbitals.

Equations (2) and (3) present the task with constraints. The conventional methods
of constrained minimization (see, e.g., [24,25]) proved not to be effective enough to
solve the complicated problems of quantum chemistry, especially when nonlinear basis
set parameters are varied.

Below we shall show how constrained minimization (2), (3) can be reduced to an
unconstrained one. For the sake of simplicity, we limit ourselves by one constrained
vector|u〉. There are three possible positions of this vector with respect to a subspaceM

spanned by the finite basis set:
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(1) P |u〉 = 0, this is a trivial case;

(2) P |u〉 = |u〉, the constraint vector lies completely within the subspaceM;

(3) P |u〉 �= 0, P |u〉 �= |u〉, then this vector can be divided into two parts

|u〉 = P |u〉 + (I − P)|u〉.
Here afterI is the identity.

Thus, we should consider only the second case, i.e., the constraint vector isP |u〉,
which we take to be normalized, i.e.,〈u|P |u〉 = 1. Then the condition (3) may be
rewritten in the symmetrized form which is convenient to perform the variations:

〈�|Pu|�〉 = 0, Pu = P |u〉〈u|P. (4)

Multiplying equation (4) by an arbitrary real multiplierλ and adding it to equation (2),
we get

L = min

(〈�|(H + λPu)|�〉
〈�|�〉

)
. (5)

Then the necessary condition of minimum (5) leads to the equation

P(H + λPu − E)P |�〉 = 0 (6)

which is an eigenvalue problem for the modified operator

Heff = P(H + λPu)P.
In this equation the multiplierλ is as yet undetermined and condition (3) is not satisfied.
The key moment of the TOCIA method is the following statement:

• The constraint vectorP |u〉 tends to an eigenvector of the modified operatorHeff,
if λ→±∞.

Then the fulfillment of condition (3) will follow automatically due to the orthogonality of
the eigenvectors, which correspond to different eigenvalues of a self-conjugate operator.

Indeed, let us consider an action ofHeff on the vectorP |u〉. Let |ek〉, k =
1,2, . . . , m, be the basis set vectors in the subspaceM. Without loss of generality,
we may assume thate1 = P |u〉 and〈ei |ek〉 = δik. Then the action takes the following
matrix form [20]:


H11+ λ H12 . . . H1m

H21 H22 . . . H2m
...

...
. . .

...

Hm1 Hm2 . . . Hmm






1
0
...

0


 = λ



H11/λ+ 1
H21/λ
...

Hm1/λ


 . (7)

HereHik = 〈ei |H |ek〉.
It is easy to see that equation (7) becomes the eigenvalue problem for the modified

operator, if and only ifλ→±∞, Q.E.D.
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As one can also see from equation (7), the constraint vectorP |u〉 tends to an eigen-
vector of the operatorHeff as 1/λ, therefore,〈�|u〉 → 0 as 1/λ. In practice, a choice
of the valueλ depends on the accuracy required. Another proof of the above-mentioned
statement and some applications of the TOCIA method can be found in [17,21]. This
result can be easily extended to a few constraint vectors. ThenPu must be substituted by
the orthoprojector on the subspace determined by all the constraint vectors.

In concluding this section we shall show that the spectra of the original operatorH

and the modified oneHeff are the same on the subspace(P −Pu)X, whereX is a Hilbert
space of states. Indeed, sinceP |u〉 is an eigenvector ofHeff, λ→ ±∞, the subspaceM
can be represented by a direct sum of subspaces

M = (P − Pu)X ⊕ PuX
which are invariant for the operatorHeff and, therefore, equation (6) is equivalent to the
eigenvalue problem on the subspacePuX, for which the solution is known (the eigen-
vector isP |u〉 and the corresponding eigenvalueEλ→±∞), i.e.,

Pu(H − Eλ)Pu|u〉 = 0, Eλ→±∞,
and the equation on the subspace(P − Pu)X

(P − Pu)(H − E)(P − Pu)|�〉 = 0. (8)

Here we took into consideration thatλ(P − Pu)Pu(P − Pu) = 0 for any valueλ.
Equation (8) means that the spectra of the operators(P − Pu)(H + λPu)(P − Pu)

and(P − Pu)H(P − Pu) are the same. But, from a practical point of view, equation (6)
is much simpler to solve than to solve equation (8). Indeed, equation (8) requires cal-
culations of〈�|H |u〉 and〈u|H |u〉, whereas equation (6) does only the overlap element
〈�|u〉. Thus, minimal extra calculations are required to implement this method.

It should be also stressed that the TOCIA method allows one either to remove
(λ → ∞) the constraint vector from the spectrum of a self-conjugate operator or to
include (λ → −∞) it into this spectrum without changing the spectrum on the sub-
space(P − Pu)X. This method is also a general one because it is based on the general
properties of self-conjugate operators and can be applied to any eigenvalue problem with
orthogonality constraints.

3. Amended UHF equations for a partly restricted Slater determinant

In this section we shall show how the method in question can be applied to a PRHF
model. In [10], from the very beginning, the WF (1) with theidentical “core” α and
β orbitals is used to derive the equations for MOs. Unlike [10] we start from an UHF
single determinant where all theα orbitals are permitted to be spatially different from
theβ orbitals. It is built upon a set of spin-orbitals which can be divided into two types
of spatial MOs: MOα: |iα〉, iα = 1,2, . . . , nα, with spin-up and MOβ : |iβ〉, iβ =
1,2, . . . , nβ , with spin-down. For short, hereafter we use notation|iγ 〉, γ = α, β, for
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the spatial part of MOs. We shall consider systems with the number ofα electrons equal
to the number ofβ electrons, i.e.,nα = nβ = p + q, S = Sz = 0 andnα + nβ = N is
the number of electrons.

Some restrictions should be imposed on MOs to obtain a PRHF function.
First, the subspaces of the closed-shell “core” determined by|iα〉, i = 1,2, . . . , q,

and |iβ〉, i = 1,2, . . . , q, must coincide. This requirement may be written as the fol-
lowing orthogonality constraint:

q∑
i

〈
iβ
∣∣(I − Pαc )∣∣iβ 〉 = 0, iβ = 1,2, . . . , q, (9)

wherePαc =
∑q

i |iα〉〈iα | is the orthoprojector on the “core” subspace of MOα.
The requirement (9) means that the MOs of theα “core” set lie completely within

the subspace defined by theβ “core” set.
Second, orthogonality between theα set and theβ set is guaranteed by spin. But

for the spatial parts, in general, we have〈iα|jβ〉 �= 0. However, we are always able to
transform our sets into new sets|iα1 〉, i = 1,2, . . . , q+p, and|iβ1 〉, i = 1,2, . . . , q+p,
of so-called corresponding orbitals [6]. These orbitals have the property that their spatial
overlap is diagonal: 〈

iα1
∣∣jβ1 〉 = Tiδij .

Therefore, the conditions

Pαc
∣∣iβ 〉= 0, iβ = q + 1, q + 2, . . . , q + p,

P
β
c

∣∣iα〉= 0, iα = q + 1, q + 2, . . . , q + p,
(10)

may be assumed to be fulfilled. HerePβc is the orthoprojector on the “core” subspace
of MOβ . We shall show that our formalism unlike [10] leads to the MOs satisfying
equations (10) automatically. These conditions provide the orthogonality of the open-
shell orbitals to the closed-shell MOs and they are useful to derive the equations.

At last, each individual set of MOs may be assumed, without loss of generality, to
be orthogonal, i.e., 〈

iα |jα〉 = δij , 〈
iβ |jβ 〉 = δij . (11)

The restriction (11) can always be fulfilled by appropriate unitary transformation within
each of the sets which leave the WF (1) invariant.

Thus, to obtain the equations for the MOs we require that the total energy be sta-
tionary under all variations in the MOs consistent with the condition (9), i.e.,

δL = δ
[
EUHF+ λ

q∑
i

〈
iβ
∣∣(I − Pαc )∣∣iβ 〉

]
= 0, (12)
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whereλ is a non-negative Lagrange multiplier. The variations in the MOs can be divided
into the following independent parts, e.g., for theβ set:∣∣δiβ 〉 = Pβ∣∣δiβ 〉+ (I − Pβ)∣∣δiβ 〉. (13)

HerePβ = ∑q+p
i |iβ〉〈iβ | is the orthoprojector on the subspace of all the occupiedβ

MOs.
The first term in (13) does not lead to changes in the total energy because it is

invariant to any orthogonal transformation of the MOs of any spin among themselves.
The energetically significant variations are described only by the second term in (13).

The variations in the first term in equation (12) then give the standard result:

δEUHF=
q+p∑
i

〈
δiα
∣∣(I − Pα)Fα∣∣iα 〉+ q+p∑

i

〈
δiβ
∣∣(I − Pβ)Fβ∣∣iβ 〉+ complex conjugate,

(14)

whereFα andFβ are the standard unrestricted Fockians.
The variations in the second term of equation (12) are important to obtain the cor-

rect equations and should be considered in more detail:

δ

[
q∑
i

〈
iβ
∣∣(I − Pαc )∣∣iβ 〉

]

=
q∑
i

〈
δiβ
∣∣(I − Pαc )∣∣iβ 〉+

q∑
i

〈
iβ
∣∣(I − Pαc )∣∣δiβ 〉−

q∑
i

〈
iβ
∣∣δP αc ∣∣iβ 〉. (15)

Due to the equation (13) the first term in (15) can be rewritten in the form

q∑
i

〈
δiβ
∣∣(I − Pαc )∣∣iβ 〉 =

q∑
i

〈
δiβ
∣∣(I − Pβ)∣∣iβ 〉− q∑

i

〈
δiβ
∣∣(I − Pβ)Pαc ∣∣iβ 〉. (16)

It is clear that the first term in (16) turns into zero because of(I −Pβ)P β = 0. Then we
have

q∑
i

〈
δiβ
∣∣(I − Pαc )∣∣iβ 〉 = −

q+p∑
i

〈
δiβ
∣∣(I − Pβ)Pαc ∣∣iβ 〉. (17)

In (17) we took equation (10)Pαc |iβ〉 = 0, iβ = q + 1, q + 2, . . . , q + p, into account.
By analogy, the second term in (15) gives the complex conjugate one

q∑
i

〈
iβ
∣∣(I − Pαc )∣∣δiβ 〉 = −

q+p∑
i

〈
iβ
∣∣Pαc (I − Pβ)∣∣δiβ 〉. (18)
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Let us consider now the third term in equation (15). Using the properties of the
orthoprojector, it is easy to show that

δP αc =
q∑
j

[(
I − Pα)∣∣δjα〉〈jα∣∣+ ∣∣jα〉〈δjα∣∣(I − Pα)]. (19)

HerePα =∑q+p
i |iα〉〈iα |.

Inserting equation (19) into the third term in (15), we obtain

q∑
i

〈
iβ
∣∣δP αc ∣∣iβ 〉 =

q+p∑
i

〈
δiα
∣∣(I − Pα)Pβc ∣∣iα 〉+ complex conjugate. (20)

Finally, from equations (14), (17), (18) and (20) we find

δL=
q+p∑
i

〈
δiα
∣∣(I − Pα)(Fα − λP βc )∣∣iα〉+

q+p∑
i

〈
δiβ
∣∣(I − Pβ)(Fβ − λP βc )∣∣iβ 〉

+ complex conjugate. (21)

If the MOs are expanded in a finite basis set (LCAO approximation) then the iden-
tity in (21) should be substituted by the orthoprojectorP defined by this basis set (di-
mensionm). It leads to the amended UHF equations for MOs:

P
(
Fα − λP βc − εαi

)
P
∣∣iα〉 = 0, i = 1,2, . . . , m, (22)

P
(
Fβ − λP αc − εβi

)
P
∣∣iβ 〉 = 0, i = 1,2, . . . , m. (23)

In these equationsλ is still not determined and the condition (9) has not been satisfied.
As we mentioned, the basic moment of our TOCIA method is that the constraint

vectors must be the eigenvectors of the modified operator. For example, for equation (22)
the “core” MOβ are the constraint vectors and eigenvectors of the effective operator
P(Fα − λP βc )P , i.e.,

P
(
Fα − λP βc − εβci

)
P
∣∣iβ 〉 = 0, iβ = 1,2, . . . , q.

This can be so if and only ifλ→∞ (the reader is referred to section 1).
The additional term in (22) means that the subspace defined by the limiting core

orbitals of theβ set and the corresponding core subspace of theα set are the same.
By analogy, the termλP αc , λ → ∞, in equation (23) means that the core subspace
of the α orbitals coincides with the corresponding core subspace of theβ set. Thus,
equations (22) and (23) lead to the identical core subspaces for both sets, i.e.,Pαc X

(1) =
P
β
c X

(1), whereX(1) is the Hilbert space of one-particle states. Therefore,

Pαc

∣∣iβ 〉 = Pβc ∣∣iβ 〉 = 0, P βc

∣∣iα〉 = Pαc ∣∣iα〉 = 0, i = q + 1, q + 2, . . . , q + p,
i.e., in our formalism the condition (10) is fulfilled automatically (see also table 4). It
is worth noting that the formalism of [10] does not lead automatically to equations (10)
and some precautions should be taken to ensure the orthogonality of the open-shell MOs
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to the closed-shell orbitals in the course of the iteration procedure. For example, instead
of the Fockian for the open shellhα the operator(I −Pc)h

α(I −Pc) has been used [10].
Each additional term in equations (22), (23) leads to the identical “core” subspace

MOs, but only both terms simultaneously lead to a minimum in the total energy (see
table 2). In practice,λ ≈ 50–100 has provided the identical “core” subspaces for both
sets (see table 4). After solving equations (22), (23) the “core” orbital energiesε

β

i and
εαi , i = 1,2, . . . , q, will be shifted. They should be redefined in the usual way:

εαi =
〈
iα
∣∣Fα∣∣iα 〉 and ε

β

i =
〈
iβ
∣∣Fβ∣∣iβ 〉.

As one can see, the proposed method requires minimal extra calculations and can
be easily attached to the standard UHF programs. From a practical point of view, the
proposed intermediate scheme is flexible enough. On the one hand, the closed-shell RHF
solution can be easily obtained if the orthoprojectorP

γ
c is substituted byP γ , γ = α, β.

On the other hand, the value ofλ = 0 leads to the UHF function. It should be also
emphasized that equations (22), (23) are cubic with respect to the LCAO coefficients
whereas PRHF formalism of [10] leads to the fifth-degree equations (see [10, equa-
tions (17), (18)]).

Moreover, equations (22) and (23) allow us to use the well-established spin-
projected MP-like PTs [7,8,22], where a zeroth-order Hamiltonian is built as a sum of
Fockians:

H(0) =
nα∑
i

Fα(i)+
nβ∑
i

Fβ(i)

with

Fα =
M∑
k

∣∣kα〉εαk 〈kα∣∣, Fβ =
M∑
k

∣∣kβ 〉εβk 〈kβ∣∣.
In particular, if we deal with one unrestricted broken orbital pair, then an UMP PT with
a single annihilation [8] provides a spin eigenstate ofS2.

4. Illustrative calculations

As mentioned above, the proposed method is general. It can be applied to any
molecular system with any basis sets. Basis set truncation is often the dominant source
of errors in contemporary molecular structure calculations. At present much progress
has been achieved in developing the methods allowing basis set truncation errors to be
controlled [26, and references therein]. Certainly, the extended basis sets (e.g., [27])
are preferred to clarify peculiar features of a new method. Nevertheless, comparisons
of the different methods against each other in the same small basis set are instructive
and can be considered as a preliminary test for the proposed method. Here the model
calculations for CH+ have been carried out to make clear some its features. We used a
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Table 1
Non-linear basis parameters for CH+. EUHF = −37.362399 hartrees,R = 5.0a0.

ka αk Xk Yk Zk
c

1 0.1623957E+03b 0 0 −0.4178851E−04
2 0.2439437E+02 0 0 0.1692488E−04
3 0.1817613E+01 0 0 0.4691178E+00
4 0.3843411E+00 0 0 −0.3063808E+00
5 0.2752028E+00 0 0 0.4867170E+01
6 0.3418764E+00 0 0 0.2276131E+00
7 0.5287032E+01 −0.1500000E−01 0 0
8 0.5287032E+01 0.1500000E−01 0 0
9 0.5287032E+01 0 −0.1500000E−01 0

10 0.5287032E+01 0 0.1500000E−01 0

aNumber of a basis set function.
b 0.1623957E+03= 0.1623957× 103.
c The frame of reference is connected with the nucleus of C.

basis set consisting of six 1s Gaussians located along the molecular axisOZ and onepx
andpy functions. Eachp-function was presented by two 1s Gaussians. Non-linear basis
parameters (the exponents and centers) were partly optimized by minimizing the UHF
energy. The corresponding values are given in table 1. Thus, our results can be easily
reproduced. The SCF iterations were continued until an absolute accuracy of 10−7 was
achieved in the elements of the density matrix.

All calculations were performed atR = 5a0, where the energies of1-+ and3.

states are close. The corresponding UHF function contains an approximately equal
mixture of these states,〈S2〉 = 0.934256 (see table 3,λ = 0). In other words,
at this geometry we deal with the singlet–triplet instability and the overlap integral
〈3α |3β〉 = −0.256952 (see table 4,λ = 0) is much smaller than one. In this case spin
contaminated UHF solution (EUHF = −37.362399 H) becomes variationally preferred
to the closed-shell RHF solution(ERHF = −37.266021 H).

Table 2 demonstrates the energy results as a function ofλ. We examined different
versions of obtaining a PRHF function. Version 1 corresponds to the value ofλ = 0 in
equation (22) while the value ofλ = 0 in equation (23) leads to version 2. The results
of version 3 were computed in accordance with equations (22) and (23) whereλ �= 0
simultaneously. All versions gave close energies. But as mentioned in section 2, only
version 3 leads to a minimum in the total energy. For this version we observed that
the greater the value ofλ the worse the iterative convergence whereas versions 2 and 3
showed good convergence.

Annihilation of the triplet component in the WF (version 3) gives pure singlet states
with the energiesEproj presented in column 4 of table 2 (e.g., forλ = 1000,Eproj =
−37.364552 H). It is useful to note that theEproj energies go below the RHF and UHF
solutions. The quantity/ in this table is the decrease inEproj between successive entries.
It allows us to observe the convergence of the proposed method asλ is increased.
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Table 2
Energy results (in hartrees) for CH+ as a function ofλ atR = 5 a.u.

λ 1a 2 3 Eproj
b /c (mH)

0 −37.362399 −37.362399 −37.362399 −37.364958 –
10 −37.361585 −37.362124 −37.362149 −37.364611 0.347
50 −37.361390 −37.362012 −37.362106 −37.364566 0.045

100 −37.361356 −37.361989 −37.362099 −37.364558 0.008
500 −37.361325 −37.361968 −37.362093 −37.364553 0.005

1000 −37.361321 −37.361965 −37.362092 −37.364552 0.001

aVersion 1 means thatλ = 0 in equation (15), version 2:λ = 0 in equation (16),
version 3:λ �= 0 for both equations (15) and (16). The first row corresponds to the
UHF function.

b The valueEproj corresponds to the energy of the singlet state1-+ with a wave func-
tion obtained by annihilation of the triplet component (version 3).

c/ (in millihartrees) is the decrease in the energyEproj between successive entries.

Table 3
Expectation value of〈S2〉 as a function ofλ (a.u.).

λ 1a 2 3 〈S2〉b
0 0.934256 0.934256 0.934256 0.000606

10 0.932502 0.934385 0.933656 0.000005
50 0.932329 0.934382 0.933626 0.0

100 0.932305 0.934381 0.933622 0.0
500 0.932289 0.934379 0.933619 0.0

1000 0.932282 0.934379 0.933617 0.0

aThe numbers 1, 2, 3 mean the same as in table 2.
b The value of〈S2〉 after annihilation for version 3.

Table 4
Overlap matrix elements as a function ofλ.

λ = 0 λ = 10 λ = 50 λ = 100 λ = 500

〈1α |1β 〉 0.999997 0.999998 0.999998 0.999998 0.999998
〈2α |2β 〉 0.999529 0.999967 0.999998 0.999998 0.999998
〈3α |3β 〉 −0.256982 −0.257579 −0.257630 −0.257630 −0.257643
〈1α |3β 〉 −0.000052 −0.000011 −0.000003 −0.000002 0.0
〈2α |3β 〉 −0.024679 −0.000800 −0.000164 −0.000082 −0.000016
〈1β |3α〉 0.000379 0.000122 0.000033 0.000017 0.000004
〈2β |3α〉 0.005741 0.000007 0.0 0.0 0.0

The expectation values of〈S2〉 for different versions and〈S2〉 after annihilating
for version 3 are collected in table 3. As one can see, the value ofλ ≈ 50–100 and
annihilation procedure provide the spin eigenstate. Table 4, where the overlap elements
for the version 3 are given, shows that the proposed formalism leads to the same core



102 V.N. Glushkov / Spin-unrestricted formalism for a Hartree–Fock approach

subspaces for theα andβ sets (see rows 1, 2). The fulfillment of the condition (10) one
can see by examining rows 4, 5, 6 and 7 of this table.

Thus, the proposed method involves relatively minor adaptation of existing UHF
codes and preliminary calculation results show its performance. A more complete test
will be carried out to estimate workability and accuracy of the method.

5. Conclusion

In this work the TOCIA method previously developed by us has been applied to
determine the MOs of a single partially restricted Slater determinant. On the one hand,
such a function has the freedom of being symmetry broken, on the other hand, it allows
one to design a spin eigenfunction in a simple way.

The proposed formalism has some fascinating features:

(i) There is not any problem connected with off-diagonal Lagrangian multipliers
coupling the open and closed shell orbitals.

(ii) Ambiguity problems in constructing Fock operators and, therefore, a zeroth-
order Hamiltonian for a PT do not appear. This is important, because the
choice ofH(0) is crucial to the success of any PT.

(iii) Unlike [10] our equations provide the conditions (10) automatically.

(iv) Equations (22) and (23) are much simpler than the corresponding equations
of [10] (cf. [10, equations (17), (18)]). We deal with the cubic equations
with respect to LCAO coefficients, whereas PRHF formalism based on the
Roothaan coupling method leads to the fifth-degree equations.

(v) Unlike the known Roothaan-based methodology our UHF formalism is more
suitable for use with the conventional PTs in incorporating the correlation
effects.

(vi) Preliminary test calculations show the performance of the method. It requires
minimal extra calculations and can be easily attached to the existing standard
UHF computer programs.

In conclusion, it is worth noting that the formalism developed here can be useful to
construct a scheme for description of the singlet excited states based on a PRHF function.

References

[1] C. Møller and M.S. Plesset, Phys. Rev. 46 (1934) 618.
[2] J.A. Pople, J. Stephen and R. Seeger, Int. J. Quant. Chem. Symp. 10 (1976) 1.
[3] R.J. Bartlett and D.M. Silver, J. Chem. Phys. 62 (1975) 3258.
[4] P.O. Löwdin, Phys. Rev. 97 (1955) 1509.
[5] I. Mayer, Adv. Quant. Chem. 12 (1980) 189.
[6] T. Amos and G.G. Hall, Proc. Roy. Soc. London Ser. A 263 (1961) 483.
[7] P.J. Knowles and N.C. Handy, J. Phys. Chem. 92 (1988) 3097.



V.N. Glushkov / Spin-unrestricted formalism for a Hartree–Fock approach 103

[8] H.B. Schlegel, J. Chem. Phys. 84 (1986) 4530.
[9] Y.G. Smeyers and L. Doreste-Suarez, Int. J. Quant. Chem. 7 (1973) 687.

[10] C. Kollmar, J. Chem. Phys. 100 (1994) 3683.
[11] C.C.J. Roothaan, Rev. Mod. Phys. 32 (1960) 179.
[12] S. Huzinaga, J. Chem. Phys. 51 (1961) 3971.
[13] R.D. Amos, J.S. Andrews, N.C. Handy and P.J. Knowles, Chem. Phys. Lett. 185 (1991) 256.
[14] C.W. Murray and N.C. Handy, J. Chem. Phys. 97 (1992) 6509.
[15] T.J. Lee, A.P. Rendel, K.G. Dyal and D. Jayatilaka, J. Chem. Phys. 100 (1994) 7400.
[16] P.M. Kozlowski and E.R. Davidson, J. Chem. Phys. 100 (1994) 3672.
[17] V.N. Glushkov, Chem. Phys. Lett. 273 (1997) 122.
[18] V.N. Glushkov, Chem. Phys. Lett. 287 (1998) 189.
[19] V.N. Glushkov and A.Ya. Tsaune, Opt. Spectrosc. 87 (1999) 249.
[20] V.N. Glushkov and A.Ya. Tsaune, Zh. Vychisl. Mat. Mat. Fiz. 25 (1985) 298.
[21] A.Ya. Tsaune, V.N. Glushkov and A.I. Aprasyukhin, J. Mol. Struct. (Theochem) 312 (1994) 289.
[22] H.B. Schlegel, J. Phys. Chem. 92 (1988) 3075.
[23] N. Gidopoulos, V.N. Glushkov and S. Wilson, Proc. Roy. Soc. London 457 (2001) 1657.
[24] P.E. Gill and W. Murrey,Numerical Methods for Constrained Optimization (Academic Press, Lon-

don/New York/San Francisco, 1974).
[25] A.C. Hurley,Introduction to the Electron Theory of Small Molecules (Academic Press, London/New

York/San Francisco, 1976).
[26] S. Wilson, Distributed Gaussian basis sets: Some recent results and prospects, in: eds. C.A. Tsipis

et al.,New Methods in Quantum Theory (Kluwer Academic Publishers, Dordrecht, 1996) pp. 437–
461.

[27] T.H. Dunning, Jr., J. Chem. Phys. 90 (1989) 1007.


